Shortcuts

Source code for autotorch.searcher.grid_searcher

__all__ = ['GridSearcher']

from .searcher import BaseSearcher
from ..core.space import Choice

[docs]class GridSearcher(BaseSearcher): """Grid Searcher, only search spaces :class:`autotorch.space.Choice` Requires scikit-learn to be installed. You can install scikit-learn with the command: ``pip install scikit-learn``. Examples -------- >>> import autotorch as ag >>> @ag.args( >>> x=ag.space.Choice(0, 1, 2), >>> y=ag.space.Choice('a', 'b', 'c')) >>> def train_fn(args, reporter): ... pass >>> searcher = ag.searcher.GridSearcher(train_fn.cs) >>> searcher.get_config() Number of configurations for grid search is 9 {'x.choice': 2, 'y.choice': 2} """ def __init__(self, configspace): super().__init__(configspace) param_grid = {} hp_ordering = configspace.get_hyperparameter_names() for hp in hp_ordering: hp_obj = configspace.get_hyperparameter(hp) hp_type = str(type(hp_obj)).lower() assert 'categorical' in hp_type, \ 'Only Choice is supported, but {} is {}'.format(hp, hp_type) param_grid[hp] = hp_obj.choices from sklearn.model_selection import ParameterGrid self._configs = list(ParameterGrid(param_grid)) print('Number of configurations for grid search is {}'.format(len(self._configs))) def __len__(self): return len(self._configs)
[docs] def get_config(self): return self._configs.pop()

Was this helpful?
Thank you

© Copyright 2018, Stacy Yang.

Built with Sphinx using a theme provided by Read the Docs.